
MATH20132 Calculus of Several Variable. 2020-21

Solutions to Problems 10 Differential forms

1. Given these 1-forms ω evaluate ωa(t) at the given a and t.

i. ω = (x2 + y2) dx+ xydy at a = (1,−1)T and t = (2,−1)T .

ii. ω = 3dx+ 4dy at

a. a = (1,−1)T and t = (2,−1)T ,

b. a = (2, 3)T and t = (2,−1)T

Solution i. ωa = 2dx(a)−dy(a) = 2p1−p2 so ωa(t) = 2p1(t)−p2(t) = 5.

ii. a. With a = (1,−1)t we have ωa = 3dx(a) + 4dy(a) = 3p1 + 4p2 so
ωa(t) = 3p1(t) + 4p2(t) = 2.

b. With a = (2, 3)T we still have ωa = 3dx(a) + 4dy(a) = 3p1 + 4p2. So
again ωa(t) = 2.

The point of part ii is that if the coefficients of the dxi are constant, then ωa

does not depend on a.

2. i. Find the differential of each of the following functions as 1-forms, ω :
Rn → Hom (Rn,R) , with the appropriate n.

a. f(x) = x sin (x2y) + y for x ∈ R2,

b. g(x) = x4 − 3x2y2 + yz2 for x ∈ R3.

ii. a. In Part i.a calculate ωa(t) with a = (2,−3)T and t = (5,−2)T .

b. In Part i.b calculate ωa(t) with a = (2,−3, 1)T and t = (5,−2, 4)T .

Solution i.a.

∂f(x)

∂x
= sin

(
x2y
)

+ 2x2y cos
(
x2y
)

and
∂f(x)

∂y
= x3 cos

(
x2y
)

+ 1.

Thus

df =
∂f(x)

∂x
dx+

∂f(x)

∂y
dy

=
(
sin
(
x2y
)

+ 2x2y cos
(
x2y
))
dx+

(
x3 cos

(
x2y
)

+ 1
)
dy.
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b.

∂g(x)

∂x
= 4x3 − 6xy2,

∂g(x)

∂y
= −6x2y + z2 and

∂g(x)

∂z
= 2yz.

Thus
dg =

(
4x3 − 6xy2

)
dx+

(
−6x2y + z2

)
dy + 2yzdz.

ii. a. With a = (2,−3)T

dfa = (sin (−12)− 24 cos (−12)) p1 + (8 cos (−12) + 1) p2.

Then with t = (5,−2)T

dfa(t) = (sin (−12)− 24 cos (−12)) p1

((
5

−2

))
+ (8 cos (−12) + 1) p2

((
5

−2

))
= 5 (− sin (12)− 24 cos (12))− 2 (8 cos (12) + 1)

= −5 sin (12)− 136 cos (12)− 2.

b. With a = (2,−3, 1)T ,

dga = −76p1 + 73p2 − 6p3.

Then with t = (5,−2, 4)T , we find dga(t) = −550.

3. In each of the following parts can you find a function f : R2 → R such
that

i. df = (x2 + y2) dx+ 2xydy,

ii. df = (1 + ex) dy + ex (y − x) dx,

iii. df = eydx+ x (ey + 1) dy.

Give your reasons and, if the function exists, write it out.

Idea Recall that if f is Fréchet differentiable then

df =
∂f

∂x
dx+

∂f

∂y
dy + ...
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Given a form g = g1dx + g2dy + ... assume there exists f : df = g. This
means ∂f/∂x = g1.

Integrate w.r.t x so f =
∫
g + C where C depends on all variables other

than x.

Differentiate w.r.t. y when we must have ∂
(∫
g + C

)
/∂y = g2.

Integrate w.r.t. y and continue, next differentiating w.r.t the third vari-
able. Either this process will work and you construct f , or you obtain a
contradiction and conclude that no such f exists.

Solution i. If f exists then

∂

∂x
f(x) = x2 + y2

and so, on integrating

f(x) =
1

3
x3 + y2x+ φ(y) , (1)

for some function φ(y). Differentiating this w.r.t. y gives

∂

∂y
f(x) = 2yx+ φ′(y) .

This must equal the coefficient of dy in the given form, i.e.

2yx+ φ′(y) = 2xy.

This can happen by choosing φ′(y) = 0 so φ(y) = C for any constant C.
Substituted back into (1) shows that

f(x) =
1

3
x3 + y2x+ C

is a function satisfying df = (x2 + y2) dx+ 2xydy.

ii. If f exists then (be careful, dy and dx have been swapped!)

∂

∂x
f(x) = ex (y − x) so f(x) = yex − xex + ex + φ(y) , (2)

for some function φ(y). (Integration by parts may have to have been used
here.) But then

∂

∂y
f(x) = ex + φ′(y)
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which equals 1 + ex, the coefficient of dy, if we choose φ′(y) = 1. That is,
φ(y) = y + C for any constant C. Substituted back into (2) and we have
shown that

f(x) = ex (y − x+ 1) + y + C

is a function satisfying df = (1 + ex) dy + ex (y − x) dx.

iii. If f exists then

∂

∂x
f(x) = ey so f(x) = xey + φ(y) ,

for some function φ(y). But then

∂

∂y
f(x) = xey + φ′(y)

which can only equal x (ey + 1), the coefficient of dy, if x = φ′(y), impossible,
hence f does not exist.

4. In the lectures we showed that if a 1-form ω is exact, i.e. ∃f : df = ω,
then it is closed, i.e. ∂ωi/∂x

j = ∂ωj/∂x
i for all pairs (i, j). I stated that the

converse is not true, i.e. not all closed forms are exact. In brief

exact =⇒ closed

closed 6=⇒ exact.

In each of the following, determine whether the 1-form ω is closed, and if
closed, exact. If exact, find all functions f such that df = ω :

i. ω = y dx : R2 → Hom(R2,R);

ii. ω = xy dx+ (x2/2) dy : R2 → Hom(R2,R);

iii. ω = 2xydx+ (x2 + 4yz) dy + 2y2dz : R3 → Hom(R3,R);

iv. ω = x dx+ xz dy + xy dz : R3 → Hom(R3,R).
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Solution i. Since ω is a form on R2 write it as ω = ydx + 0dy. Then,
because

∂ω1

∂x2
=
∂y

∂y
= 1 6= ∂0

∂x
=
∂ω2

∂x1
,

the form is not closed and so it is not exact.

ii. The form is closed since

∂ω1

∂x2
=
∂ (xy)

∂y
= x =

1

2

∂x2

∂x
=
∂ω2

∂x1
.

If ω is exact, so ω = df for some differentiable f , then

ω =
∂f

∂x
dx+

∂f

∂y
dy in which case

∂f

∂x
= xy and

∂f

∂y
=
x2

2
. (3)

Integrate the first of these to get

f =
1

2
x2y + g(y) ,

for some function g. Differentiating this expression for f w.r.t. y gives

∂f

∂y
=
x2

2
+
dg

dy
; yet, from (3) ,

∂f

∂y
=
x2

2
.

So we must have dg/dy = 0, i.e. g = c, a constant, in which case f =
x2y/2 + c. The existence of f implies that ω is exact.

iii. The form is closed since all the following hold:

∂ω1

∂x2
=

∂

∂y
2xy = 2x =

∂

∂x

(
x2 + 4yz

)
=
∂ω2

∂x1
,

∂ω1

∂x3
=

∂

∂z
2xy = 0 =

∂

∂x
2y2 =

∂ω3

∂x1
,

∂ω2

∂x3
=

∂

∂z

(
x2 + 4yz

)
= 4y =

∂

∂y
2y2 =

∂ω3

∂x2
.

Note how many conditions we need to check.

If ω = df for some f then we must have

∂f

∂x
= 2xy,

∂f

∂y
= x2 + 4yz and

∂f

∂z
= 2y2. (4)
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Integrate the first to get f = x2y + g(y, z) for some function g. Differen-
tiating this w.r.t. y gives

∂f

∂y
= x2 +

∂g

∂y
; yet, from (4) ,

∂f

∂y
= x2 + 4yz.

Hence we must have

∂g

∂y
= 4yz, which integrates to g = 2y2z + h (z) ,

for some function h. Combining the last two steps gives f = x2y+2y2z+h (z).
Differentiating this w.r.t. z gives

∂f

∂z
= 2y2 +

dh

dz
; yet, from (4) ,

∂f

∂z
=
∂f

∂z
= 2y2.

Therefore, we must have

dh

dz
= 0, so h = c and hence f = x2y + 2y2z + c,

for some constant c. The existence of f implies that ω is exact.

iv. The form is not closed. Remember, for a form to be closed ∂ωi/∂x
j =

∂ωj/∂x
i has to be true for all pairs of (i, j). To not be closed it suffices to

find one pair for which we do not have equality. In this case,

∂ω1

∂x2
=
∂x

∂y
= 0 6= z =

∂ (xz)

∂x
=
∂ω2

∂x1
.

Note In the examples here where the form was closed it was also exact. A
form that is closed but not exact has to be more complicated than those seen
here. See Question 8.

5. Let ω : U ⊆ R→ Hom(R,R) be a 1-form on R. This means there exists
f : U → R such that ω = fdx. Let γ be the closed interval [a, b] ⊂ R
directed from a to b. Prove that∫

γ

ω =

∫ b

a

f(x)dx.
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This is saying that for 1-forms on R the integral along a line given in the
lectures reduces to the previous definition of integration known from School
days.

Hint What parametrisation g : [a, b]→ γ should be chosen?

Solution Since γ = [a, b] the simplest choice of parametrisation is g : [a, b]→
[a, b] the identity map, g (x) = x for all a ≤ x ≤ b. Then, by definition,∫

γ

ω =

∫ b

a

ωg(x)(g
′(x)) dx.

Yet ω =f dx so, by the definition of a 1-form,

ωg(x) = f(g(x)) dx (g(x)) = f(x) p1.

Also g′ (x) = 1 for all x, and so

ωg(x) (g′ (x)) = f(x) p1 (1) = f(x) .

Hence ∫
γ

ω =

∫ b

a

ωg(x)(g
′(x)) dx =

∫ b

a

f(x) dx,

as required.

(This result is normally written as
∫
γ
fdx =

∫ b
a
f(x) dx, the left hand side

being an integral of the 1-form fdx, the right hand side the integral of a
scalar-valued function of one variable.)
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6. Integrate the following 1-forms on the curves given.

i. ω = (xz + y) dx+z2dy+xydz over the curve γ parametrised by g(t) =

(t, t2, 1 + t)
T
, 0 ≤ t ≤ 2,

ii. ω = yzdx− xdy − (y − z) dz over the curve γ parametrised by g(t) =

(t2, t− 1, t+ 1)
T
, 0 ≤ t ≤ 1.

Solution i. At the point g(t) on the curve, the 1-form becomes the linear
function

ωg(t) =
(
t (1 + t) + t2

)
p1 + (1 + t)2 p2 + t3p3.

Evaluated at the tangent vector g′(t) we get

ωg(t)(g
′(t)) = ωg(t)

(
(1, 2t, 1)T

)
=
(
t (1 + t) + t2

)
+ 2t (1 + t)2 + t3

= 3t+ 6t2 + 3t3.

Hence, by definition,∫
γ

ω =

∫ 2

0

ωg(t)(g
′(t)) dt =

∫ 2

0

(
3t+ 6t2 + 3t3

)
dt = 34.

ii.
ωg(t) = (t− 1) (t+ 1) p1 − t2p2 + 2p3.

Then

ωg(t)(g
′(t)) = ωg(t)

(
(2t, 1, 1)T

)
= 2t (t− 1) (t+ 1)− t2 + 2

= 2t3 − t2 − 2t+ 2.

Hence ∫
γ

ω =

∫ 1

0

ωg(t)(g
′(t)) dt =

∫ 1

0

(
2t3 − t2 − 2t+ 2

)
dt =

7

6
.

7. Integrate the 1-form ω = ydx + xydy on R2 around the closed curve γ :
x2 + y2 = R2, for a fixed R, in a counter-clockwise direction.

Hint Parametrise the curve by

g(t) =

(
R cos t
R sin t

)
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for 0 ≤ t ≤ 2π. For the final integration it may save time to recall that∫ 2π

0
sin2tdt = π.

Solution At the point g (t) on the curve, the 1-form becomes the linear
function

ωg(t) = (R sin t) p1 +
(
R2 cos t sin t

)
p2.

Next,

g′ (t) =

(
−R sin t
R cos t

)
so ωg(t)(g

′(t)) = −R2 sin2 t+R3 sin t cos2 t.

Then∫
γ

ω =

∫ 2π

0

ωg(t)(g
′(t)) dt =

∫ 2π

0

(
−R2 sin2 t+R3 sin t cos2 t

)
dt

= −R2

∫ 2π

0

sin2 tdt+

[
−R3 cos3 t

3

]2π

0

= −πR2.

8. i. Prove that the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy : R2 \ {0} → Hom(R2,R)

is a closed form.

ii. Let γ be the unit circle centre 0 in R2. Evaluate
∫
γ
ω.

iii. Deduce that ω is not exact.

This is an illustration of the result

closed 6=⇒ exact.

Solution i. The form is closed because

∂ω1

∂x2
=

∂

∂y

(
−y

x2 + y2

)
=

y2 − x2

(x2 + y2)2 =
∂

∂x

(
x

x2 + y2

)
=
∂ω2

∂x1
.
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ii. Parametrise γ by

g(t) =

(
cos t
sin t

)
,

for 0 ≤ t ≤ 2π. Then

ωg(t) = − (sin t) p1 + (cos t) p2,

and

ωg(t)(g
′(t)) = − (sin t) p1

(
− sin t

cos t

)
+ (cos t) p2

(
− sin t

cos t

)
= sin2 t+ cos2 t = 1.

Hence ∫
γ

ω =

∫ 2π

0

ωg(t)(g
′(t)) dt =

∫ 2π

0

dt = 2π.

iii. Recall a Corollary from the notes: If ω : U → Hom (Rn,R) is an exact
1-form on an open set U ⊆ Rn and γ is a closed differentiable curve in U
then

∫
γ
ω = 0. The contrapositive of this is if

∫
γ
ω 6= 0 then ω is not exact.

In light of Part ii this can be applied to the ω of this question, concluding
that it is not exact.

(It can be shown that ω restricted to R2 \
{

(x, 0)T : x ≤ 0
}

, i.e. the plane

with the non-positive x-axis removed, is exact.)

9. i. Integrate the 1-form ω = (x− z) dx+xyzdy+ (z − y) dz along a closed
path Γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 of four parts, each parametrised by:

• g1(s) = (s, 0, s)T for s from 0 to 1;

• g2(t) = (1 + t, t, 1)T for t from 0 to 2;

• g3(s) = (s+ 2, 2s, s)T for s from 1 to 0 (note the direction of s);

• g4(t) = (t, 0, 0)T for t from 2 to 0.
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ii. Prove that the form ω is not exact.

Solution • With g1(s) = (s, 0, s)T , we have g′
1(s) = (1, 0, 1)T and

ωg1(s)(g
′
1(s)) = sp3 (g′

1(s)) = s.

So ∫
γ1

ω =

∫ 1

0

ωg1(s)(g
′
1(s)) ds =

∫ 1

0

sds =
1

2
.

• With g2(t) = (1 + t, t, 1)T , we have g′
2(t) = (1, 1, 0)T and

ωg2(t)(g
′
2(t)) =

(
tp1 + t (t+ 1) p2 + (1− t) p3

)
(g′

2(t))

= t+ t (t+ 1) = t2 + 2t.

Then ∫
γ2

ω =

∫ 2

0

(
t2 + 2t

)
dt =

20

3
.

• With g3(s) = (s+ 2, 2s, s)T , we have g′
3(s) = (1, 2, 1)T and

ωg3(t)(g
′
3(t)) =

(
2p1 + 2 (s+ 2) s2p2 − sp3

)
(g′

3(s))

= 2 + 4 (s+ 2) s2 − s

= 4s3 + 8s2 − s+ 2.

Then, (noting in which direction s is travelling),∫
γ3

ω =

∫ 0

1

(
4s3 + 8s2 − s+ 2

)
ds = −31

6
.

• With g4(t) = (t, 0, 0)T , we have g′
4(t) = (1, 0, 0)T and

ωg4(t)(g
′
4(t)) = tp1(g′

4(s)) = t.

Then, (noting in which direction t is travelling)∫
γ4

ω =

∫ 0

2

tdt = −2.
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Combining the results above∫
Γ

ω =
1

2
+

20

3
− 31

6
− 2 = 0.

ii. If f satisfies df = ω = (x− z) dx+xyzdy+(z − y) dz then f must satisfy
all of

∂f

∂x
= x− z,

∂f

∂y
= xy and

∂f

∂z
= y − z. (5)

Integrate the first of these to get f(x) = x2/2 − xz + g1(y, z) for any
function g1. Differentiate w.r.t. y when we get

∂f

∂y
=
∂g1

∂y
(y, z) .

Yet, when combined with (5), this gives

∂g1

∂y
(y, z) = xy.

This is impossible since there is no dependency on x in the left hand side.
Hence there is no f : df = ω, thus ω is not exact.

Note the point of this question is to show that

ω exact =⇒
∫
γ

ω = 0 ∀ closed γ,

∃ closed γ :

∫
γ

ω = 0 6=⇒ ω exact,

10. Evaluate the 2-form(
x2yzdx ∧ dy + (x− z) dx ∧ dz + yzdy ∧ dz

)
a

(v1,v2)

where a = (1,−1, 2)T and v1 = (1, 2, 3)T , v2 = (4,−5, 3)T .

Solution(
x2yzdx ∧ dy + (x− z) dx ∧ dz + yzdy ∧ dz

)
a

= −2p1∧p2−p1∧p3−2p2∧p3.
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In turn,

p1 ∧ p2(v1, v2) = det

(
1 4
2 −5

)
= −13,

p1 ∧ p3(v1, v2) = det

(
1 4
3 3

)
= −9,

p2 ∧ p3(v1, v2) = det

(
2 −5
3 3

)
= 21.

Hence(
x2yzdx ∧ dy + (x− z) dx ∧ dz + yzdy ∧ dz

)
a
(v1,v2) = −2 (−13)− (−9)− 2 (21)

= −7.

11. Integrate the 2-form β = yzdx∧ dy+ dx∧ dz− (xy + 1) dy∧ dz over the
surface

R =


 s+ t

st
s

 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 2

 .

Solution Let

g(t) =

 s+ t
st
s

 ,

for t = (s, t)T satisfying 0 ≤ s ≤ 1, 0 ≤ t ≤ 2. Then

βg(t) =
(
s2t
)
p1 ∧ p2 + p1 ∧ p3 − (st (s+ t) + 1) p2 ∧ p3.

This linear function is applied to (d1g(t) , d2g(t)) where

d1g(t) =

 1
t
1

 and d2g(t) =

 1
s
0

 .
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Then, writing d1 and d2 for d1g(t) , d2g(t) respectively,

p1 ∧ p2(d1, d2) = det

(
1 1
t s

)
= s− t,

p1 ∧ p3(d1, d2) = det

(
1 1
1 0

)
= −1,

p2 ∧ p3(d1, d2) = det

(
t s
1 0

)
= −s.

Thus

βg(t)(d1g(t) , d2g(t)) = s2t (s− t)− 1 + s (st (s+ t) + 1)

= 2s3t− 1 + s.

Therefore the required integral is∫
R
β =

∫ 1

0

∫ 2

0

(
2s3t− 1 + s

)
dtds = 0.

12 Integrate the 2-form β = (y − 1) dx∧dy over the region D (R) : x2 +y2 ≤
R2 for fixed R.

Hint Parametrise the region by

g(t) =

(
r cos θ
r sin θ

)
,

where t = (r, θ) with 0 ≤ r ≤ R and 0 ≤ θ ≤ 2π.

Solution With the parametrisation given

βg(t) = (r sin θ − 1) p1 ∧ p2.

This linear function is applied to (d1g(t) , d2g(t)) where

d1g(t) =

(
cos θ
sin θ

)
and d2g(t) =

(
−r sin θ
r cos θ

)
.

Then

p1 ∧ p2(d1g(t) , d2g(t)) = det

(
cos θ −r sin θ
sin θ r cos θ

)
= r.
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The integral is∫
D(R)

β =

∫ R

0

r

∫ 2π

0

(r sin θ − 1) dθdr = −2π

∫ R

0

rdr = −πR2.

13. Let α, β and γ be 1 - forms given as

α = x dx+ yz dy + xyz dz,

β = y2 dx+ z dy − 3(x− 1) dz and

γ = z dx ∧ dy − y dx ∧ dz + x dy ∧ dz.

Find α ∧α, α ∧ β and α ∧ γ.

Solution

α ∧α = (x dx+ yz dy + xyz dz) ∧ (x dx+ yz dy + xyz dz)

= x2dx ∧ dx+ xyzdx ∧ dy + x2yzdx ∧ dz

+yzxdy ∧ dx+ y2z2dy ∧ dy + xy2z2dy ∧ dz

+x2yzdz ∧ dx+ xy2z2dz ∧ dy + x2y2z2dz ∧ dz

= xyzdx ∧ dy + x2yzdx ∧ dz

+yzxdy ∧ dx+ +xy2z2dy ∧ dz

+x2yzdz ∧ dx+ xy2z2dz ∧ dy

since dx ∧ dx = dy ∧ dy dz ∧ dz = 0.

Next dy ∧ dx = −dx ∧ dy, dz ∧ dx = dx ∧ dz and dz ∧ dy = −dy ∧ dz so

α ∧α = xyzdx ∧ dy + x2yzdx ∧ dz − yzxdx ∧ dz

+xy2z2dy ∧ dz − x2yzdx ∧ dz − xy2z2dy ∧ dz

= 0.

In fact α ∧α = 0 for any 1-forms α. Can you prove this?
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Similarly,

α ∧ β = (x dx+ yz dy + xyz dz) ∧
(
y2 dx+ z dy − 3(x− 1) dz

)
= xzdx ∧ dy − 3x (x− 1) dx ∧ dz + y3zdy ∧ dx

−3yz (x− 1) dy ∧ dz + xy3zdz ∧ dx+ xyz2dz ∧ dy

= xzdx ∧ dy − 3x (x− 1) dx ∧ dz − y3zdx ∧ dy

−3yz (x− 1) dy ∧ dz − xy3zdx ∧ dz − xyz2dy ∧ dz

=
(
xz − y3z

)
dx ∧ dy −

(
3x (x− 1) + xy3z

)
dx ∧ dz

−
(
3yz (x− 1) + xyz2

)
dy ∧ dz.

Finally, since any wedge product with repeated forms is zero, e.g. dx ∧
dy ∧ dy = 0, we have

α ∧ γ = (x dx+ yz dy + xyz dz) ∧ (z dx ∧ dy − y dx ∧ dz + x dy ∧ dz)

= x2 dx ∧ dy ∧ dz − y2z dy ∧ dx ∧ dz + xyz2 dz ∧ dx ∧ dy

= x2 dx ∧ dy ∧ dz + y2z dx ∧ dy ∧ dz + xyz2 dx ∧ dy ∧ dz

=
(
x2 + y2z + xyz2

)
dx ∧ dy ∧ dz

We have made use of the identities dy ∧ dx ∧ dz = −dx ∧ dy ∧ dz and
dz ∧ dx ∧ dy = −dx ∧ dz ∧ dy = dx ∧ dy ∧ dz.

14 Find the derivatives of

i. ydx+ xydy (seen in Question 7),

ii. (x− z) dx+ xyzdy + (z − y) dz (seen in Question 9),

Have you seen your answers in other questions on this sheet. If so, what
conclusions can you draw?

Hint Think about Stokes’ Theorem, surfaces and boundaries.

Solution i. The derivative is (y − 1) dx ∧ dy, a form seen in Question 12,

ii. The derivative is yzdx ∧ dy + dx ∧ dz − (xy + 1) dy ∧ dz, a form seen in
Question 11.

If you look carefully at these pairs of questions 7 & 12, 9 & 11, you see
the first question is a line integral over a closed curve, and the second an
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integral over the region within the curve. In all cases the answers are the
same; they are all examples of Stokes’ Theorem.

With γ : x2 + y2 = R2, for a fixed R, and D (R) : x2 + y2 ≤ R2 we have∫
∂D
ydx+ xydy =

∫
γ

ydx+ xydy since ∂D = γ

= −πR2 Question 7

=

∫
D

(y − 1) dx ∧ dy Question 12

=

∫
D
d (ydx+ xydy) ,

since d (ydx+ xydy) = (y − 1) dx ∧ dy. This final result,∫
∂D
ydx+ xydy =

∫
D(R)

d (ydx+ xydy) ,

is an illustration of Stoke’s Theorem.

Again, the path Γ of Question 9 is the boundary of the region R from
Question 11, i.e. ∂R = Γ. So the same argument again gives∫
∂R

(x− z) dx+xyzdy+(z − y) dz = 0 =

∫
R
d
((

(x− z) dx+ xyzdy + (z − y) dz
))

.

Yet another illustration of Stoke’s Theorem.

(Note, you may have found the integral over the arc is −1 times the integral
over the curve. This is simply due to the order of d1g and d2g when evaluating
the 2-form. There is a way of making this choice consistently but it depends
on the ‘orientation’ of the surface, a subject I have not covered.)
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15 For the forms in Question 13, find dα, dβ and dγ.

Solution

dα = dx ∧ dx+ (zdy + ydz) ∧ dy + (yzdx+ xzdy + xydz) ∧ dz

= ydz ∧ dy + yzdx ∧ dz + xzdy ∧ dz

= yzdx ∧ dz + (xz − y) dy ∧ dz.

dβ = 2ydy ∧ dx+ dz ∧ dy − 3dx ∧ dz = −2ydx ∧ dy − 3dx ∧ dz − dy ∧ dz.

dγ = dz ∧ dx ∧ dy − dy ∧ dx ∧ dz + dx ∧ dy ∧ dz = 3dx ∧ dy ∧ dz.
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Solutions to Additional Questions

16. Integrate the 1-form ω = yxdy along the boundary of the ellipse

(x− 1)2

4
+

(y + 2)2

9
= 1,

in the counter-clockwise direction.

Hint to parametrise this curve use the fact that cos2 t + sin2 t = 1. For the
final integration it may save time to note that

∫ 2π

0
cos2 tdt = π.

Solution Set
x− 1

2
= cos t and

y + 2

3
= sin t,

so the parametrisation is

g(t) =

(
1 + 2 cos t
−2 + 3 sin t

)
,

for 0 ≤ t ≤ 2π. Then

ωg(t) = (−2 + 3 sin t) (1 + 2 cos t) p2.

This linear function is applied to

g′(t) =

(
−2 sin t
3 cos t

)
,

when we get

ωg(t)(g
′(t)) = (−2 + 3 sin t) (1 + 2 cos t) (3 cos t)

= −6 cos t− 12 cos2 t+ 9 sin t cos t+ 18 sin t cos2 t.

Finally, the required integral is∫ 2π

0

ωg(t)(g
′(t)) dt =

∫ 2π

0

(
−6 cos t− 12 cos2 t+ 9 sin t cos t+ 18 sin t cos2 t

)
dt

=

[
6 sin t+

9

2
sin2 t− 9 cos3 t

]2π

0

− 12

∫ 2π

0

cos2 tdt = −12π,

on using the hint.
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17. Integrate the 1-form ω = (x+ y + z) dx + y2dy + xydz along γ, the
boundary of the unit circle in the x - y plane, centre the origin, in the counter-
clockwise direction.

Hint Even though the circle lies in the x - y plane the 1-form is defined on
R3 and so you have to parametrise the circle in R3.

Solution Parametrise the circle with

g(t) =

 cos t
sin t

0


for 0 ≤ t ≤ 2π. Then

ωg(t) = (cos t+ sin t) p1 + (sin t) p2 + (cos t sin t) p3.

This is applied to

g′(t) =

 − sin t
cos t

0

 ,

when we get

ωg(t)(g
′(t)) = − (cos t+ sin t) sin t+ sin2 t cos t.

Thus∫ 2π

0

ωg(t)(g
′(t)) dt =

∫ 2π

0

(
− (cos t+ sin t) sin t+ sin2 t cos t

)
dt

=

[
cos2 t

2
+

sin3 t

3

]2π

0

−
∫ 2π

0

sin2 tdt

= −π.

Hence ∫
γ

ω = −π.
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18. Integrate the 2-form β = −dx∧ dy+ (y − 1) dx∧ dz+ xdy ∧ dz over H,
the upper half of the unit sphere, so x2 + y2 + z2 = 1 with z ≥ 0.

Hint Parametrise this surface by the spherical coordinates

g(t) =

 sinφ cos θ
sinφ sin θ

cosφ

 ,

where t = (φ, θ), with 0 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.

Solution With the parametrisation given

βg(t) = −p1 ∧ p2 + (sinφ sin θ − 1) p1 ∧ p3 + (sinφ cos θ) p2 ∧ p3.

This linear function is applied to (d1g(t) , d2g(t)) where

d1g(t) =

 cosφ cos θ
cosφ sin θ
− sinφ

 and d2g(t) =

 − sinφ sin θ
sinφ cos θ

0

 .

Then, writing d1 for d1g(t) and d2 for d2g(t) ,

p1 ∧ p2(d1, d2) = det

(
cosφ cos θ − sinφ sin θ
cosφ sin θ sinφ cos θ

)
= cosφ sinφ

p1 ∧ p3(d1, d2) = det

(
cosφ cos θ − sinφ sin θ
− sinφ 0

)
= − sin2 φ sin θ,

p2 ∧ p3(d1, d2) = det

(
cosφ sin θ sinφ cos θ
− sinφ 0

)
= sin2 φ cos θ.

Thus

βg(t)(d1, d2) = − cosφ sinφ− (sinφ sin θ − 1) sin2 φ sin θ + sinφ cos θ sin2 φ cos θ

= − cosφ sinφ− sin3 φ sin2 θ + sin2 φ sin θ + sin3 φ cos2 θ.

Then the integral is∫ π/2

0

∫ 2π

0

(
− cosφ sinφ− sin3 φ sin2 θ + sin2 φ sin θ + sin3 φ cos2 θ

)
dθdφ.

(6)
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The inner integral equals

− 2π cosφ sinφ− sin3 φ

∫ 2π

0

sin2 θdθ + sin2 φ

∫ 2π

0

sin θdθ + sin3 φ

∫ 2π

0

cos2 θdθ

= −2π cosφ sinφ− π sin3 φ+ π sin3 φ

= −2π cosφ sinφ,

since ∫ 2π

0

sin2 θdθ =

∫ 2π

0

cos2 θdθ = π and

∫ 2π

0

sin θdθ = 0.

Then the double integral (6) is

−2π

∫ π/2

0

cosφ sinφdφ = −π
[
sin2 φ

]π/2
0

= −π.

Thus ∫
H
β = −π.

19. Integrate the 2-form ω = (x2y + y2z2) dx∧dy+y3zdx∧dz+xy2zdy∧dz
over the surface of the sphere x2 + y2 + z2 = a.

Solution We use the parametrization of the previous question, i.e. a sinφ cos θ
a sinφ sin θ
a cosφ

 ,

this time with −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.

Use the results on pi ∧ pl from the last question we find that the integral
over (x2y + y2z2) dx ∧ dy is one of(

(a sinφ cos θ)2 (a sinφ sin θ) + (a sinφ sin θ)2 (a sinφ sin θ)2) (a2 cosφ sinφ
)

= a5
(
sin3 φ cosφ sin θ cos3 θ + sin5 φ cosφ sin4 θ

)
In both terms the integrals over φ will give zero.

The term y3zdx ∧ dz becomes

(a sinφ sin θ)3 a cosφ
(
−a2 sin2 φ sin θ

)
= a6 sin5 φ cosφ sin4 θ.
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Again the integral over φ will give zero.

Finally, the xy2zdy ∧ dz term gives

a sinφ cos θ (a sinφ sin θ)2 a cosφ
(
a2 sin2 φ cos θ

)2
= a8 sin7 φ cosφ sin2 θ cos3 θ.

Yet again the integral over φ gives zero. Hence the complete integral over
the surface of the sphere is zero.

A quicker proof of this follows from the Divergence Theorem, see Ap-
pendix of Notes for it’s statement. Let S ⊆ R3 be a three dimensional subset
with a boundary ∂S, a two dimensional surface. Let ω = f 1dy ∧ dz+ f 2dz ∧
dx + f 3dx ∧ dy be a two form (note the ordering of the terms). Then the
Divergence Theorem asserts that∫

∂S

ω =

∫
S

(divf) dxdydz

where

divf =
∂f 1

∂x
+
∂f 2

∂y
+
∂f 3

∂z
.

In the present example

ω = xy2zdy ∧ dz − y3zdz ∧ dx+
(
x2y + y2z2

)
dx ∧ dy,

and it is easily seen that divf = 0.

20. Integrate the 2-form β = −dx ∧ dy + (y − 1) dx ∧ dz + xdy ∧ dz over D,
the region x2 + y2 ≤ 1 in the x - y plane.

Hint As in question 17, though the region of integration lies in the x - y plane
the form is defined on R3 and so you have to choose a parametrisation of the
region as a subset of R3.

Solution Parametrise the region by

g(t) =

 r cos t
r sin t

0

 ,

where t = (r, t)T satisfies 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π. Then

βg(t) = −p1 ∧ p2 + (r sin t− 1) p1 ∧ p3 + (r cos t) p2 ∧ p3.
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This linear function is applied to (d1g(t) , d2g(t)) where

d1g(t) =

 cos t
sin t

0

 and d2g(t) =

 −r sin t
r cos t

0

 .

Because both vectors have 0 in their last position, only p1∧p2(d1g(t) , d2g(t))
is non-zero. In fact

βg(t)(d1g (t) , d2g (t)) = −r.

Hence the required integral is

−
∫ 1

0

∫ 2π

0

rdtdr = −π.

Hence ∫
D
β = −π.

21. Explain why Questions 17, 18 and 20 together illustrate Stoke’s Theorem.

Solution The derivative of the 1-form from Question 17 is the 2-form found
in both Questions 18 and 20. Also, the boundaries of the regions H and D
in Questions 18 and 20 is the path in Question 17.

For example, Questions 17 & 18 give∫
∂H
ω =

∫
γ

ω since ∂H =γ

= −π Question 17

=

∫
H
β Question 18

=

∫
H
dω since dω = β.

The final ∫
∂H
ω =

∫
H
dω

is simply Stoke’s Theorem.
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22. Integrate the form β = ydx ∧ dy over the area within the ellipse

(x− 1)2

4
+

(y + 2)2

9
= 1.

Hint parametrise this region by

g(t) =

(
1 + 2r cos t
−2 + 3r sin t

)
where t = (r, t)T satisfies 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π.

Note this question is related to Question 16 by Stoke’s Theorem.

Solution With the parametrisation given,

ωg(t) = (−2 + 3r sin t) p1 ∧ p2.

This linear function is applied to d1g(t) and d2g(t) which are

d1g(t) =

(
2 cos t
3 sin t

)
and d2g(t) =

(
−2r sin t

3r cos t

)
.

Then

p1 ∧ p2(d1g(t) , d2g(t)) = det

(
2 cos t −2r sin t
3 sin t 3r cos t

)
= 6r.

Thus the required integral is

6

∫ 1

0

r

(∫ 2π

0

(−2 + 3r sin t) dt

)
dr = −24π

∫ 1

0

rdr = −12π.

If you have been reading the asides in my notes on Vector Calculus the fol-
lowing may be of interest.

23. Suppose that f , g : R3 → R3 are two vector fields on R3. Recall, from
the asides in the notes, the vectors

dr =


dx1

dx2

...
dxn

 and n =

 dy ∧ dz
dz ∧ dx
dx ∧ dy

 .

Prove that
(f • dr) ∧ (g • dr) = f × g • n.
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We say that f • dr and g • dr are the 1 -forms associated with f andg
while f × g • n is the 2 -form associated with f × g. Hence this result says
that the wedge product of the 1 -forms associated with f and g is the 2 -form
associated with the vector product of f and g.

Solution Let f = (f 1, f 2, f 3)
T

and g = (g1, g2, g3)
T

. Then

f × g =
(
f 2g3 − f 3g2, f 3g1 − f 1g3, f 1g2 − f 2g1

)T
,

and

f • dr = f 1dx1 + f 2dx2 + f 3dx3

g • dr = g1dx1 + g2dx2 + g3dx3.

Thus

f × g • n =
(
f 2g3 − f 3g2

)
dy ∧ dz +

(
f 3g1 − f 1g3

)
dz ∧ dx (7)

+
(
f 1g2 − f 2g1

)
dx ∧ dy.

Also,

(f • dr) ∧ (g • dr) =
(
f 1dx1 + f 2dx2 + f 3dx3

)
∧
(
g1dx1 + g2dx2 + g3dx3

)
= f 1dx1 ∧ g1dx1 + f 1dx1 ∧ g2dx2 + f 1dx1 ∧ g3dx3

+f 2dx2 ∧ g1dx1 + f 2dx2 ∧ g2dx2 + f 2dx2 ∧ g3dx3

+f 3dx3 ∧ g1dx1 + f 3dx3 ∧ g2dx2 + f 3dx3 ∧ g3dx3

= f 1g2dx1 ∧ dx2 + f 1g3dx1 ∧ dx3 + f 2g1dx3 ∧ dx1

+f 2g3dx2 ∧ dx3 + f 3g1dx3 ∧ dx1 + f 3g2dx3 ∧ dx2

=
(
f 1g2 − f 2g1

)
dx1 ∧ dx2 −

(
f 3g1 − f 1g3

)
dx1 ∧ dx3

+
(
f 2g3 − f 3g2

)
dx2 ∧ dx3

= f × g • n

as required. The last step requires a rearrangement of (7).
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